Functionalisation of textiles for improvement of fibre/matrix adhesion in thermoplastic composites
C. Böhme, S. Schindler, B. Meier, N. Buschner, I. Roth, F. Helbig

Post processed application of bonding agent on the glass fibre surface

- Post processed application of bonding agent after textile processing to increase mechanical properties in thermoplastic composites
- Functionalisation of the non-crimp fabrics in an immersion bath containing the silane-based bonding agent
- Pure water and ethanol-water mixtures used as solvents with different silane concentrations

Composite panel manufacturing process

- Multilayer designed panel consists of alternating layers of biaxially-oriented glass-fibre fabrics and textile-based polypropylene
- Composite panels manufactured in two step press process containing functionalised textiles
 1st step: Melting of the textile-based polypropylene
 2nd step: Consolidation of the matrix component

Fibre/matrix adhesion by comparison of the mechanical properties according to the silane concentration

- Young’s modulus and tensile strength
- Measuring of mechanical properties to evaluate influence of silane concentration
 - Tensile tests and falling dart tests of specimen from composite panels
 - Reference with untreated textile reinforcement
 - Increase of mechanical properties for higher concentration of a silane-based bonding agent
 - Significant peak at 5% to 7.5% concentration
 - Visible decrease with concentration of 10% silane
 - Mechanical properties at 1.5% and 3% lower than reference
 - Further tests with 7.5% silane concentration in immersion bath
- Penetration energy
 - Functionalised with water (above) and ethanol-water mixture (below) as solvent